Part |
Introduction

The concept of the
C++ Standard
Template Library

Summary: There are several libraries for containers and algorithms in C++. These
libraries are not standardized and are not interchangeable. In the course of the
now finished standardization of the C++ programming language, a template-based
library for containers and optimized algorithms has been incorporated into the
standard. This chapter explains the concept of this library and describes it with
the aid of some examples.

The big advantage of templates is plain to see. Evaluation of templates is carried
out at compile time, there are no run time losses — for example, through polymorph
function access in case genericity is realized with inheritance. The advantage of
standardization is of even greater value. Programs using a standardized library are
more portable since all compiler producers will be oriented towards the standard.
Furthermore, they are easier to maintain since the corresponding know-how is much
more widespread than knowledge of any special library.

The emphasis is on algorithms which cooperate with containers and iterators
(Latin iterare = repeat). Through the template mechanism of C++, containers are
suited for objects of the most varied classes. An iterator is an object which can be
moved on a container like a pointer, to refer either to one or another object. Algo-
rithms work with containers by accessing the corresponding iterators. The concepts
will be presented in more detail later.

References: Owing to its very nature, this book is based on well-known algo-
rithms of which several — those used in the examples — are described in detail. This
book cannot, however, provide a detailed presentation of all the algorithms used in
the STL. For example, readers who want to know more about red-black trees or
quicksort should refer to other books about algorithms. The authors of the STL
refer to which is a very thorough book and well worth read-
ing. An introduction to the STL is provided by , published
while I was working on the first edition of this book. describes the

4

THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

1.1

C++ standard library including the STL part, but without the applications and the
extensions presented in this book.

Genericity of components

An interesting approach is not to emphasize inheritance and polymorphism, but
to provide containers and algorithms for all possible (including user-defined) data
types, provided that they satisfy a few preconditions. C++ templates constitute the
basis for this. Thus, the emphasis is not so much on object orientation but on generic
programming. This has the very important advantage that the number of different
container and algorithm types needed is drastically reduced — with concomitant type
security.

Let us illustrate this with a brief example. Let us assume that we want to find an
element of the int data type in a container of the vector type. For this, we need
a find () algorithm which searches the container. If we have n different containers
(list, set, ...), we need a separate algorithm for each container, which results in n
find () algorithms. We may want to find not only an int object, but an object of
an arbitrary data type out of m possible data types. This would raise the number of
find () algorithms to n - m. This observation will apply to k different algorithms,
so that we have to write a total of k£ - n - m algorithms.

The use of templates allows you to reduce the number m to 1. STL algorithms,
however, do not work directly with containers but with interface objects, that is,
iterators which access containers. Iterators are pointer-like objects which will be
explained in detail later. This reduces the necessary total to n + k instead of n - k, a
considerable saving.

An additional advantage is type security, since templates are already resolved at
compile time.

1.2 Abstract and implicit data types

Abstract data types encapsulate data and functions that work with this data. The data
is not visible to the user of an abstract data type, and access to data is exclusively
carried out by functions, also called methods. Thus, the abstract data type is specified
by the methods, not by the data. In C++, abstract data types are represented by
classes which present a tiny flaw: the data that represents the state of an object of this
abstract data type is visible (though not accessible) in the private part of the class
declaration for each program that takes cognizance of this class via #include. From
the standpoint of object orientation, ‘hiding’ the private data in an implementation
file would be more elegant.

Implicit data types can on the one hand be abstract data types themselves, on the
other hand they are used to implement abstract data types. In the latter case they
are not visible from the outside, thus the name ‘implicit.” For example: an abstract
data type stack allows depositing and removing of elements only from the ‘top.” A

1.3

1.3.1

1.3.2

THE FUNDAMENTAL CONCEPT 5

stack can, for instance, use a singly-linked list as implicit data type, though a vector
would be possible as well. Users of the stack would not be able to tell the difference.

Implicit data types are not important in the sense of an object-oriented analysis
which puts the emphasis on the interfaces (methods) of an abstract data type. They
are, however, very important for design and implementation because they often de-
termine the run time behavior. Frequently, a non-functional requirement, such as
compliance with a given response time, can be fulfilled only through a clever choice
of implicit data types and algorithms. A simple example is the access to a number
of sorted addresses: access via a singly-linked list would be very slow compared to
access via a binary tree.

The STL uses the distinction between abstract and implicit data types by allow-
ing an additional choice between different implicit data types for the implementation
of some abstract data types.

The fundamental concept

The most important elements of the STL are outlined before their interplay is
discussed.

Containers

The STL provides different kinds of containers which are all formulated as template
classes. Containers are objects which are used to manage other objects, where it is
left to the user to decide whether the objects are deposited by value or by reference.
‘By value’ means that each element in the container is an object of a copyable type
(value semantics). ‘By reference’ means that the elements in the container are point-
ers to objects of possibly heterogeneous type. In C++, the different types must be
derived from a base class and the pointers must be of the ‘pointer to base class’ type.

A means of making different algorithms work with different containers is to
choose the same names (which are evaluated at compile time) for similar operations.
The method size (), for example, returns the number of elements in a container,
no matter whether it is of vector, list, or map type. Other examples are the
methods begin () and end () which are used to determine the position of the first
element and the position aftfer the last element. These positions are always defined
in a C++ array. An empty container is characterized by identical values of begin ()
and end ().

lterators

Iterators work like pointers. Depending on the application, they can be common
pointers or objects with pointer-like properties. Iterators are used to access container
elements. They can move from one element to the other, with the kind of movement
being hidden to the outside (control abstraction). In a vector, for example, the ++

6 THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

operation means a simple switch to the next memory position, whereas the same op-
eration in a binary search tree is associated with a traversal of the tree. The different
iterators will be described in detail later.

1.3.3 Algorithms

The template algorithms work with iterators that access containers. Since not only
user-defined data types, but also the data types already existing in C++, such as int,
char, and so on are supported, the algorithms have been designed in such a way that
they can also work with normal pointers (see the example in the following section).

1.3.4 Interplay

Containers make iterators available, algorithms use them:
Containers <= Iterators <= Algorithms

This leads to a separation which allows an exceptionally clear design. In the
following example, variations of one program will be used to show that algorithms
function just as well with C arrays as with template classes of the STL.

In this example, an int value to be entered in a dialog is to be found in an array,
by using a £ind () function which is also present as an STL algorithm. In parallel,
find () is formulated in different ways in order to visualize the processes. The
required formulation is approached step by step by presenting a variation without
usage of the STL. The container is a simple C array. To show that a pointer works as
an iterator, the type name IteratorType is introduced with typedef.

// kl/a3.4/main.cpp

// variation 1, without using the STL

#include<iostream> // see Section 1.7.2 for header conventions
using namespace std;

// new type name IteratorType for pointer to const int
// (we don’t want to modify the values here)
typedef const intx IteratorType;

// prototype of the algorithm
IteratorType find(IteratorType begin, IteratorType end,
const inté& Value);

int main () {

const int Count = 100;
int aContainer[Count]; / / define container
IteratorType begin = aContainer; // pointer to the beginning

// position after the last element
IteratorType end = aContainer + Count;

THE FUNDAMENTAL CONCEPT 7

/ / fill container with even numbers
for(int 1 = 0; 1 < Count; ++1i)
aContainer[i] = 2%*1i;

int Number = 0;
1= -1) {

cout << " enter required number (-1 = end):";

while (Number

cin >> Number;
if (Number != -1) { // continue?
IteratorType position = find(begin, end, Number);

if (position != end)
cout << "found at position "
<< (position - begin) << endl;
else
cout << Number << " not found!" << endl;

}

// implementation
IteratorType find(IteratorType begin, IteratorType end,
const inté& Value) {

while (begin != end // pointer comparison
&& xbegin != Value) // dereferencing and object comparison
++begin; // next position

return begin;

It can be seen that the find () algorithm itself does not need to know any-
thing about containers. It only uses pointers (iterators) which need to have very few
capabilities:

e The ++ operator is used to proceed to the next position.

e The « operator is used for dereferencing. Applied to a pointer (iterator), it returns
a reference to the underlying object.

e The pointers must allow comparison by means of the != operator.

The objects in the container are compared by means of the != operator. In the
next step, we cancel the implementation of the find () function and replace the
prototype with a template:

// variation 2: algorithm as template (see kl/a3.4/maintl.cpp)
template<class Iteratortype, class T>
Iteratortype find(Iteratortype begin, Iteratortype end,
const T& Value) {
while (begin != end // iterator comparison

8

THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

&& xbegin != Value)

++begin; // next position

return begin;

The rest of the program remains unchanged. The placeholder IteratorType
for the iterator’s data type may have an arbitrary name. In the third step, we use a
container of the STL. The iterators begin and end are replaced with the methods of

the vector<T> class which return a corresponding iterator.

// variation 3 : a container as STL template (see k1/a3.4/maint2.cpp)
#include<iostream>

// STL

using namespace std;

#include<vector>

// new type name IteratorType for reading purposes, maybe (or

// maybe not!) equal to ‘pointer to const int’

// (depends on implementation)

typedef vector<int>::const_iterator IteratorType;

// algorithm as template
template<class Iteratortype, class T>
Iteratortype find(Iteratortype begin,

const T& Value) {

// dereferencing and object comparison

Iteratortype end,

while (begin != end // iterator comparison
&& xbegin != Value) // object comparison
++begin; // mext position
return begin;
}
int main() {
const int Count = 100;
vector<int> aContainer (Count); // define container
for(int i = 0; i < Count; ++i) / / fill container with
aContainer[i] = 2%i; // even numbers
int Number = 0;
while (Number != -1) {
cout << " enter required number (-1 = end):";
cin >> Number;
if (Number != -1) {

// use global find() defined above
IteratorType position =

::find (aContainer.begin(),

aContainer.end (),

if (position

/ / use of container methods:
Number) ;

!= aContainer.end())

cout << "found at position "

1.4

INTERNAL FUNCTIONING 9

<< (position - aContainer.begin()) << endl;
else cout << Number << " not found!" << endl;

This shows how the STL container cooperates with our algorithm and how arith-
metic with iterators is possible (formation of a difference). In the last step we use
the £ind () algorithm contained in the STL and replace the whole template with an
additional #include instruction:

/ / variation 4: STL algorithm (k1/a3.4/maintstl.cpp)

#include<algorithm>

// ... the rest as variation 3, but without £ind () template. Also the call : : £ind ()
// has to be replaced with £ind () (i.e. std::find()).

In addition to this, it is not necessary to define an iterator type with typedef
because every container of the STL supplies a corresponding type. So instead of
IteratorType, yOU may write vector<int>::iterator in the above program.
An interesting fact is that the algorithm can cooperate with any class of iterators
that provides the operations ! = for comparison, « for dereferencing, and ++ for pro-
ceeding to the next element. This is one reason for the power of the concept and for
the fact that each algorithm has to be present in only one form, which minimizes
management problems and avoids inconsistencies. Thus, algorithms and containers
of the STL come quite close to the ideal concept that one can simply plug together
various software components which will then function with each other.

The use of the large number of algorithms and containers of the STL makes
programs not only shorter, but also more reliable, because programming errors are
prevented. This helps to increase productivity in software development.

Internal functioning

How does the STL function internally? To show this in detail, the example from
the previous section will be used, not with a container of the STL, but with a user-
defined class which behaves exactly as the classes of the STL. To ensure that an
iterator of this class cannot simply be identified with a pointer, the example must be
made slightly more complex: instead of the vector, we take a singly-linked list. The
class will be called s1ist (for simple list).

Thus, we have no random access to the elements via the index operator. There-
fore, the container is filled by means of the method push_front (). Furthermore,
to keep the class as simple as possible, no run time optimization is considered. This
class for a simple list is not complete; it provides only what is needed in the example.

The predefined £ind () algorithm is used to show that the user-defined class
really behaves exactly like a class of the STL.

The list consists of list elements whose type is defined inside the 1ist class as a
nested public class (st ruct). In a structure, direct access to internal data is possible,

10 THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

but this is not a problem here because the data is located in the private section of the
slist class. Each list element carries the pertinent data, for example a number,
together with a pointer to the next list element. firstElement is the pointer to
the first list element. The class slist provides an iterator type iterator which
is located in the public section since it is to be publicly accessible. It is also used
in the following main () program. An iterator object stores the current container
position in the current attribute. The methods satisfy the requirements for iterators
formulated on page 7.

/ / file k1/a4/slist.h : list template for singly-linked lists

// T is a placeholder for the data type of a list element

// incomplete! (only functions needed for the example are implemented)
#ifndef SIMPLELIST_H

#define SIMPLELIST H

namespace br_stl {

#include<cassert>
#include<iterator>

template<class T>
class slist {
public:

/+«Some types of the class get public names. Then it is possible to use them outside
the class without knowing the implementation.

*/

typedef T value_type;

typedef ptrdiff_t difference_type;

typedef Tx pointer;

typedef T& reference;

// etc. see text

slist() : firstElement (0), Count (0) {}

/ ~copy constructor, destructor and assignment operator are omitted! The implemen-
tation of push_front () creates a new list element and inserts it at the beginning

of the list:
*/
void push_front (const T& Datum) { // insertatbeginning
firstElement = new ListElement (Datum, firstElement);
++Count;
}
private:

struct ListElement {

INTERNAL FUNCTIONING 11

T Data;
ListElement =*Next;
ListElement (const T& Datum, ListElement* p)
Data (Datum), Next (p) {}
}i

ListElement *firstElement;
size_t Count;

public:
class iterator {

public:
typedef std::forward_iterator_tag iterator_category;
typedef T value_type;
typedef Tx pointer;
typedef T& reference;
typedef size_t size_type;
typedef ptrdiff_ t difference_type;

iterator (ListElement* Init = 0)
current (Init) {}

T& operator* () { // dereferencing
return current->Data;

}

const T& operatorx () const { // dereferencing
return current->Data;

}

iterator& operator++() { // prefix
if (current) // notyet arrived at the end?
current = current—->Next;

return *this;

}

iterator operator++(int) { // postfix
iterator temp = xthis;
++xthis;

return temp;

}

bool operator==(const iterator& x) const {
return current == x.current;

}

bool operator!=(const iterator& x) const {

return current != x.current;

12 THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

private:
ListElement current; // pointer to current element
}; // iterator

/*As can be seen above, in the postfix variation of the ++ operator, the copy con-
structor is needed for initialization and return of t emp. For this reason, the prefix
variation should be preferred where possible. Some methods of the s1ist class
use the iterator class:

*/

iterator begin() const { return iterator (firstElement);}
iterator end() const { return iterator();}

}i

} // namespace br_stl

#endif // SIMPLELIST_H

Sometimes it is advantageous to write

// internal type definition may be unknown
slist<myDataType>::difference_type Dist;

in a program instead of

// predefined type
long Dist;

This is especially useful if there are possible later changes in the internal type struc-
ture of class slist. Using the public type names avoids changing an application
program which uses the list. More advantages of exporting types will be described
in Section 2.1.

At this point we only need the subtraction operator to be able to calculate differ-
ences between list iterators.

// (insert in slist.h above)
template<class Iterator>
Iterator::difference_type operator-(Iterator second,
Iterator first) {
Iterator::difference_type count = 0; //type maybe int
/ =The difference between the iterators is determined by incrementing £irst until the
second iterator is reached. Thus, the condition is that £irst lies not after the second
iterator. In other words: second must be able to reach the iterator by means of the
++ operator.

&ﬁile(first = second
&& first != Iterator()) {
++first;
++count;

}

// In case of inequality, second is not reachable by first
assert (first == second);

INTERNAL FUNCTIONING 13

return count;

The loop condition involving iterator () (together with the assertion) ensures
that the loop does not run endlessly and that the program aborts when the iterator
cannot be reached from the iterator £irst by means of the ++ operation.

The following main () program strongly resembles the one on page 8 and uses
the user-defined class in the same way as a class of the STL. Try using this example
to get a clear idea of the functioning details, and you won’t have any great problem
understanding the STL.

// kl/a4/mainsti2.cpp

#include<algorithm> // contains £ind ()
#include<iostream>

#include"slist.h" / / user-defined list class (see above)

int main() {
const int count = 100;
br_stl::slist<int> aContainer; / / define the container
/ «+Change of order because the container is filled from the front! This example differs
from those in Section 1.3.4, because elements are inserted, i.e., the container is
expanded as needed.

*/

for(int i = count; i >= 0; —--i) { // fill the container with
aContainer.push_front (2%1i); // even numbers

}

int Number = 0;

while (Number != -1) {
std::cout << " enter required number (-1 = end):";

std::cin >> Number;

1f (Number != -1) {
// use of container methods:
br_stl::slist<int>::iterator Position =
std::find (aContainer.begin(),
aContainer.end (), Number);

if (Position != aContainer.end())
std::cout << "found at position "
<< (Position - aContainer.begin())
<< std::endl;
else
std::cout << Number << " not found!"
<< std::endl;

14

THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

1.5

Exercise

1.1 Complete the s1ist class using the following:

e A method iterator erase(iterator p) that removes the element pointed
to by the iterator p from the list. The returned iterator is to point to the element
following p provided it exists. Otherwise, end () is to be returned.

e A method void clear () that deletes the whole list.
o A method bool empty () that shows whether the list is empty.
e A method size_t size () that returns the number of elements.

e A copy constructor and an assignment operator. The latter can utilize the first: Cre-
ate a temporary copy of the slist and then exchange the management information
(attributes).

e A destructor.

Complexity

The STL has been developed with the aim of achieving high efficiency. Run time
costs are specified for each algorithm depending on the size and kind of the container
to be processed. The only assumption made is that user-defined iterators can move
from one element of a container to the next element in constant time.

This section gives a brief introduction to the concept of complexity as a measure
for computing and memory requirements.

An algorithm should obviously be correct — this is, however, not the only require-
ment. Computer resources are limited. Thus, another requirement is that algorithms
must be executed on a real machine in a finite number of cycles. The main resources
are computer memory and available computing time.

Complexity is the term that describes the behavior of an algorithm with regard
to memory and time consumption. The efficiency of an algorithm in the form of a
running program depends on:

the hardware,

the type and speed of required operations,

the programming language, and

the algorithm itself.

The concept of complexity exclusively concerns the algorithm. Machine prop-
erties and programming language details are ignored, since they modify the time
needed for an algorithm by a constant factor if we assume a von Neumann architec-
ture. There are two ways of analyzing the efficiency of an algorithm:

1.5.1

COMPLEXITY 15

1. Measurements

e Carry out measurements of the run time behavior for different sets of input
data.

e The best, worst, and average cases are of interest. The cases depend on the
properties of the input data, the system environment and the algorithm, so that
corresponding knowledge must be available.

2. Analysis of the algorithm

e The algorithm is analyzed. Machine, operating system and compiler are ig-
nored.

e The frequency of executed instructions is an index of the speed. This frequency
can be directly derived from the algorithm.

e Again, the best, worst, and average cases are of interest.

Only the second way will be described. Wherever the term ‘complexity’ ap-
pears, it is intended to mean time complexity. Examples can be found in Table 1.1.
Since they are independent of any special programming language, they are written
in pseudo-code notation. The symbol stands for ‘proportional to.’

The loop variables ¢ and j are of no importance in this context. The frequencies
with which the instructions x = z + y and n = n/2 in Table 1.1 are executed differ
by orders of magnitude which are not dependent on any machine or programming
language. Only these orders of magnitude are of interest here.

O notation

The ‘O notation’ describes an order of magnitude. In the examples of Table 1.1, the
orders of magnitude O(1), O(n), O(n?), and O(log n) occur. Apart from a constant
factor, the ‘O notation’ describes the maximum execution time for large values of n,
thus indicating an upper bound. What ‘large’ means depends on the individual case,
as will be shown in one of the following examples. The constant factor comprises all
environmental properties in which the algorithm runs, like CPU speed, compiler etc.
Ignoring the constant factor allows for comparing algorithms.

Definition: Let f(n) be the execution time of an algorithm. This algorithm is of
(time) complexity O(g(n)) if and only if two positive constants ¢ and ng exist so
that f(n) < cg(n) applies to all n > nyg.

Example

Let us assume an algorithm for vectors whose execution time f(n) depends on the
length n of the vector. Let us further assume that

f(n) =n?+5n+ 100

16

THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

Algorithm Frequency | (Time) complexity

r=x+vy 1 constant

for i=1ton
dox=x+y xn linear
od

for i=1ton
do
for j=1ton
dox=zx+vy xXn quadratic
od
od

n =natural number

k=0

while n > 0

do x log n logarithmic
n=mn/2
k=k+1

od

Table 1.1: Algorithms and frequency.

applies. The execution time could now be estimated with a simpler function g(n) =
1.1n2. If we now compare f(n) with g(n), we see that g(n) > f(n) for all n > 66.
Obviously, we could have chosen different values for ¢ and ng, for example ¢ =
1.01 and ng = 519. Therefore, complexity of f(n) is O(n?). The complexity says
nothing about actual computing time.

Example

Let A be an algorithm of execution time f4(n) = 10*n and B be an algorithm of
execution time fz(n) = n2. It can easily be seen that algorithm A is faster for all
values n > 10*, whereas B is faster for all n < 10*. Algorithm A is therefore to
be recommended for large values of n, where in this case, the word ‘large’ means
n > 10%.

Therefore, algorithms of low complexity should normally be preferred. Excep-
tions are possible, depending on the value of the constants ¢ and ng. In order to select
an appropriate algorithm for a given problem, the size n of the input data set must
be known.

Some rules

1. O(const = f)=O(f) Example: O(2n) = O(n)

COMPLEXITY 17

Examples:
2. O(f*g)=0(f)*x0(g) O((1mn) *n) = O(17n) * O(n)
= O(n) * O(n) = O(n?)
O(f/9) = O(f) »O(3) O((3n%)/n) = O(3n?) = O(n?)

3. O(f + g) = dominating function
of O(f)and O(g) O(n® +n?) = O(n®)

Examples

Linear search
Let us assume an unordered sequence of names together with addresses and phone
numbers. The task is to find the phone number for a given name.

e The number to be found can lie at the beginning, the end, or somewhere in the
middle.

e On average, we must compare n/2 names when the total number of names is n.
e The time complexity is O(n/2) = O(n).

Binary search
Now, we look for a name in a normal, thus sorted, phone book.

e We look in the middle of the book and find a name. If this is the name we are
looking for, we have finished. If not, we continue our search in the left or right half
of the book, depending on whether the name we are looking for is alphabetically
located before or after the name we just saw.

e We repeat the previous step with the chosen half of the book until we have
found the name we are looking for, or we find out that it does not occur in the
book at all. With each of these steps, the number of possible names is halved:
n/2,n/4,n/8,...,4,2 1.

e There exists a number k& so that n > 251 and n < 2¥. We do not need more than
k comparisons.

e The algorithm is of complexity O(k) = O(log, n) = O(logn).

Travelling salesman problem (TSP)
A travelling salesman wants to visit n towns. He wants to save time and money and
looks for the shortest route that connects all towns. One method to find the optimum
solution is an analysis of all possible routes. What is the complexity of this method?
As his first town, he can choose one out of n towns. From this point, he can
choose between n — 1 towns to drive to next. When he has reached the next town, he
can choose between n — 2 towns, and so on. When he has visited n — 1 towns, only
one choice remains: town number n. The total number of routes to connect n towns
isn-(n—1)-(n—2)-...-2-1=nl!

18

THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

If 20 towns are to be visited, there are 20! =2,432,902,008,176,640,000 different
routes to compare. The complexity of the algorithm is O(n!).

This well-known problem is an example of a class of similar problems which
are called NP complete. NP is an abbreviation for ‘non-deterministic polyno-
mial.” This means that a non-deterministic algorithm (which ‘magically’ knows
which is to be the next step) can solve the problem in polynomial time (O(n*)).
(A more extensive and more serious treatment of the subject can be found in

.) In the end, it does not matter at all in which order
the next town to be visited is chosen, but if you do know the right order, the solution
is found very quickly.

However, predefining an order changes the algorithm into a deterministic one,
and because magic does not work, we usually have no choice other than predefining
a schematic order — and there we are! Only occasionally does experience help with
specially structured problems. As far as the salesman is concerned, this means that
there is no deterministic algorithm with a polynomial time function n° (¢ = constant)
that dominates n! For each possible constant ¢ there exists an ng, so that for all n
greater than ng, n! is greater than n°.

The class of NP problems is also called ‘intractable,’” because for a large number
of input variables, solution attempts do not arrive at a result in a reasonable time
measured on a human timescale. On the other hand, existing solutions of NP prob-
lems can be verified ‘quickly,” that is, in polynomial time.

A mathematical proof that the salesman problem and other related problems can
have no polynomial solution is still pending. There are some heuristic methods which
at least approach the optimum and are significantly faster than O(n!).

This class of problems has practical applications, for example:

e drilling hundreds or thousands of holes in a circuit board with a moving laser in a
minimum time,

e finding the cheapest path in a computer network,

o distributing goods in a region using a shipping agency.

1.5.2 () notation

The O notation defines an upper bound for an algorithm. Improvement of an algo-
rithm can reduce the bound. For example, sequential search in a sorted table: O(n),
binary search in a sorted table: O(logn). Is there also a lower bound for a given al-
gorithm? Is it possible to show that the solution of a given problem requires a certain
minimum of effort?

If a problem necessitates at least O(n?) steps, there is no point in searching for
an O(n) solution.

The €2 notation describes lower bounds. For example, sequential search in a table
is of the order §2(n), because each element must be looked at at least once. Q2(log n)
is not possible. In this case, 2(n) = O(n).

AUXILIARY CLASSES AND FUNCTIONS 19

Example

Multiplication of two m * n matrices:
upper bound:
O(n?) simple algorithm (three nested loops)
O(n?381) von Strassen 1969
O(n?376) Coppersmith and Winograd 1987

(quoted in)

lower bound:
Q(n?) at least two loops are needed, because

n? elements must be entered into the product matrix

1.6 Auxiliary classes and functions

This section briefly describes some tools which will be needed at a later stage.

1.6.1 Pairs

A pair in the sense of the STL is an encapsulation of two objects which belong
together and which can be of different types. Pairs are fundamental components
which will be used in later chapters. They are defined by means of a public (st ruct)
template class, defined in header <utility>:

template <class T1l, class T2>
struct pair {

Tl first;

T2 second;

pair () {}; // seetext

// initialize £irst with x and second with y:

pair(const Tl& x, const T2& y);

// copy constructor:

template<class U, class V> pair(const pair<U, V> &p);
Vi

The default constructor causes the elements to be initiated with the default con-
structors of their type. In addition to the class definition, there are some comparison
operators:

template <class T1l, class T2>
bool operator==(const pair<Tl, T2>& x,
const pair<Tl, T2>& y) |
return x.first == y.first && x.second == y.second;

20 THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

1.6.2

template <class T1l, class T2>
bool operator<(const pair<Tl, T2>& x,
const pair<Tl, T2>& y) {
return x.first < y.first
[(!(y.first < x.first)
&& x.second < y.second);

When the first objects are equal, the return value of the < operator is determined
by the comparison of the second objects. However, in order to make only minimum
demands on the objects, the equality operator == is not used in the second template.
It might be the case that equality of two pairs is not required in a program. Then, the
above template operator==() is not applied, so that the classes T1 and T2 only

have to provide the < operator. The other comparison operators for pairs are

template <class T1l, class T2>
bool operator!=(const pair<Tl, T2>& x,
const pair<Tl, T2>& vy);
template <class T1l, class T2>
bool operator> (const pair<Tl, T2>& x,
const pair<Tl, T2>& y);
template <class T1l, class T2>
bool operator>=(const pair<Tl, T2>& x,
const pair<Tl, T2>& vy);
template <class T1l, class T2>
bool operator<=(const pair<Tl, T2>& x,
const pair<Tl, T2>& y);

A function facilitates the generation of pairs:
template <class T1l, class T2>

pair<Tl, T2> make_pair(const Tl& x, const T2& y) {
return pair<Tl, T2>(x, V);

pair objects are needed from Section 4.4.1 onward.

Comparison operators

In namespace std: : rel_ops, the STL provides comparison operators which make
it possible that in a class only the operators == and < must be defined and yet the

whole set of comparisons is available:

template <class T>
bool operator!=(const T& x, const T& y) {

1.6.3

AUXILIARY CLASSES AND FUNCTIONS 21

return ! (x == y);

}

template <class T>
bool operator>(const T& x, const T& y) |
return y < x;

}

template <class T>
bool operator<=(const T& x, const T& y) {
return !(y < x);

template <class T>
bool operator>=(const T& x, const T& y) {
return ! (x < vy);

Strictly speaking, it would be possible to manage with only the < operator if the
following definition is contained in the STL:

// not part of the STL!

template <class T>

bool operator==(const T& x, const T& y) {
return !'(x < vy) && !(y < x);

}

This kind of check is sometimes used inside the STL. Strictly speaking, the term
‘equality’ is no longer appropriate; one should actually use the term ‘equivalence.’
When comparing integer numbers with the < operator, the two terms coincide; this
is, however, not generally the case, as the following example shows. In Webster’s
International Dictionary, accented letters are treated in the same way as the corre-
sponding simple vowels. Thus, ‘piece de résistance’ stands between ‘piece by piece’
and ‘piece-meal.” ‘piece’ and ‘piece’ are not equal, but equivalent with respect to
sorting. Another way of carrying out comparisons is shown in Section 1.6.3.

Function objects

In an expression, the call of a function is replaced with the result returned by the
function. The task of the function can be taken over by an object — a technique
frequently employed in the algorithms of the STL. For this purpose, the function
operator () is overloaded with the operator function operator () ().

Then an object can be called in the same way as a function. Algorithmic objects
of this kind are called function objects or functors.

Functors are objects which behave like functions but have all the properties of
objects. They can be generated, passed as arguments, or have their state modified.
The change of state allows a flexible application which, with functions, would be
only possible via additional parameters.

22

THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

Comparisons

The STL provides a large number of template classes for comparisons. Objects of
this class appear later under the name of comparison object. Table 1.2 shows the calls
of objects as function calls, that is, X (x, y) is identical to X.operator () (x,y).

The comparison classes are binary functions, and therefore they inherit from the
binary_function class. The only purpose of this class is to provide uniform type
names for all classes inheriting from it:

template<class Argl, class Arg2, class Result>
struct binary_function {

typedef Argl first_argument_type;

typedef Arg2 second_argument_type;

typedef Result result_type;
}i

For unary classes, a corresponding template unary_function is defined. The
word struct saves the public label. Everything can be public, because the class
has no data to be protected. This, for example, is the equal_to template for equality:

template<class T>
struct equal_to : binary_function<T, T, bool> {

bool operator () (const T& x, const T& y) const {
return x == y;
}
}i

Object definition (Type T) | Call Return
equal_to<T> X; X(x, V) X ==y
not_equal_to<T> X; X(x, V) x =y
greater<T> X; X(x, y) | x>y
less<T> X; X(x, V) x <y
greater_equal<T> X; X(x, V) X >=y
less_equal<T> X; X(x, y) X <=y

Table 1.2: Template classes for comparison (header <functional>).

The aim of templates is to supply algorithms with a uniform interface. The tem-
plates rely on the corresponding operators of data type T. However, a specialized
comparison class can be written for user-defined classes without having to change
the algorithm. The user-defined class does not even need to have the comparison op-
erators ==, < and so on. This technique is used quite frequently; at this point, a short
example will demonstrate how it functions.

A normal C array of int numbers is sorted once by element size using the stan-
dard comparison object 1ess<int> and once by the absolute value of the elements,
where in the second case, a user-defined comparison object absoluteLess is used.
To show the effect more clearly, a normal C array and a modest function template

AUXILIARY CLASSES AND FUNCTIONS 23

bubble_sort are used instead of accessing the containers and algorithms of the
STL.

/ / kl/a6/compare.cpp — Demonstration of comparison objects

#include<functional> // less<T>
#include<iostream>
#include<cstdlib> // abs ()

struct absolutelLess {
bool operator () (int x, int y) const {
return abs (x) < abs(y);

bi

The following sorting routine no longer uses the < operator in the i £ condition,
but the comparison object whose operator () (...) is called. Please ignore the
bad performance, later we’ll see the much faster sort () (see page 122).

template<class T, class CompareType>
void bubble_sort (T array, int Count,
const CompareType& Compare) {
for(int 1 = 0; 1 < Count; ++1i) {
for(int j = i+l; j < Count; ++73)
if (Compare(arrayl[il], array[3jl)) { // functor call
// exchange
const T temp = arrayl[i];
arrayl[i] = arrayl[jl;
array[j] = temp;

}

// Auxiliary procedure for display
void Display (int *Array, int N) {
for(int 1 = 0; 1 < N; ++i) {
std::cout.width(7);
std::cout << Arrayl[il];
}
std::cout << std::endl;
}

int main() {
int Table[] = {55, -7, 3, -9, 2, -9198, -937, 1, 473};
const int num = sizeof (Table)/sizeof (int);

/+«The comparison object normalCompare is of the standard class type less,
which has been made known with #include<functional>. less compares
with the < operator..

*/

24

THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

1.6.4

// Variation 1
std::less<int> normalCompare;
bubble_sort (Table, num, normalCompare);
std::cout << "sorted by size:" << std::endl;
Display(Table, num);

// 47355321-7-9-937-9198

/ = Alternatively, you can do without explicit creation of an object when the construc-
tor is called in the argument list.

*/

// Variation 2

bubble_sort (Table, num, std::less<int>());

/ «The comparison object is of the user-defined type absoluteLess which uses
not only the < operator, but also the abs () function, and which in principle can
be arbitrarily complex. It is a big advantage that the bubble_sort algorithm
and its interface do not have to be changed.

*/
std::cout << "sorted by absolute value:" << std::endl;
bubble_sort (Table, num, absoluteless());

Display (Table, num);
// —9198 -93747355-9-7321
} // End of example

The user-defined design of special comparison functions shows the great flexi-
bility of the concept of function objects. In addition to the examples shown, appro-
priately written function objects can also carry data, if needed.

Arithmetic and logic operations

As in the previous section, the STL provides template classes for arithmetic and
logic operations (see Table 1.3) which can be used like a function by means of the
overloaded operator (). (Note that ‘multiplies’ was called ‘times’ in earlier draft
versions of the C++ standard.) The advantage is again that these templates can be
overloaded with specializations without having to change the interfaces of the algo-
rithms involved.

Function adapters

Function adapters are nothing more than function objects which cooperate with other
function objects to adapt them to different requirements. This allows us to get by with
existing functors and avoid writing new ones.

not1

The function not1 takes a functor as the parameter which represents a predicate
with one argument (thus the suffix 1) and returns a functor which converts the

AUXILIARY CLASSES AND FUNCTIONS 25

Object definition (Type T) | Call Return
plus<T> X; X(x, y) | x +y
minus<T> X; X(x, V) X -y
multiplies<T> X; X(x, V) X * Y
divides<T> X; X(x, y) | x /¥y
modulus<T> X; X(x, Vv) X %y
negate<T> X; X (X) -X
logical_and<T> X; X(x, V) X && Yy
logical_or<T> X; X(x, y) | x|y
logical_not<T> X; X (x) I'x

Table 1.3: Arithmetic and logic template classes (header <functional>).

logical result of the predicate into its opposite. Let us assume that there exists a
predicate odd with the following definition (that by the way, can be replaced with
bind2nd (modulus<int> (), 2), see page 26):

struct odd : public unary_function<int, bool> {
bool operator () (int x) const {
return (x % 2) != 0;

}i
Application of not1 is shown by the following program fragment:

int 1i;
cin >> i;

if (odd() (1))

cout << i << " is odd";
if (notl (odd()) (1))

cout << 1 << " is even";

Instead of an object declared on purpose, first a temporary object of type odd is
generated whose operator () is called. In the second if instruction, not1 generates
a functor whose operator () is called with the argument i. How does this work? The
STL provides a class out of which not 1 generates an object:

template <class Predicate>
class unary_negate
public unary_function<typename
Predicate::argument_type, bool> {

protected:
Predicate pred;

public:
explicit unary_negate (const Predicate& x) : pred(x) {}
bool operator () (const typename

Predicate::argument_type& x) const {

26 THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

return !pred(x);

bi

The operator () returns the negated predicate. The class inherits the type defi-
nition of argument_type from unary_function. However, the compiler shall

be able to identify the parameter type of operator () () without analyzing the
Predicate-template. This is required by . Therefore typename is
used.

not2

This function works in a similar way, but it refers to predicates with two parameters.
This can be used to reverse the sorting order of variation 2 on page 24:

// Variation 2, reverse sorting order
bubble_sort (Table, num, std::not2(std::less<int>()));

Analogous to not1, internally a class binary_negate is used. The sorting or-
der by absolute value on page 24 can be reversed with not 2 only if the class inherits
from binary_function for comparisons (see page 22):

struct absoluteless
public binary_function<int, int, bool> ({
// as above
}i

bind1st, bind2nd

These functions transform binary function objects into unary function objects by
binding one of the two arguments to a value. They accept a function object with
two arguments and a value x. They return a unary function object whose first or
second argument is bound to the value x. For example, the known functor less
(see Table 1.2) compares two values and returns true if the first value is less than
the second one. If the second value is fixed, for example to 1000, a unary function
object suffices which is generated by means of binder2nd. The £ind () algorithm
described on page 6 has an overloaded variation described later (page 89) which
accepts one predicate.

std::find(v.begin(), v.end(),
std::bind2nd(std::less<int> (), 1000));

finds the first number in the int vector v which is less than 1000, and

std::find(v.begin(), v.end(),
std::bindlst (std::less<int>(), 1000));

finds the first number in the int vector v which is greater than 1000. The functors
returned by the functions bindlst<operation, value>() and bind2nd<op-—
eration, value>() are of the type binderlst<operation, value> and

SOME CONVENTIONS 27

binder2nd <operation, value>.In an application such as the one above, the
types usually do not appear explicitly (class definition in header <functional>).

ptr_fun

This overloaded function transforms a pointer to a function into a functor. As an
argument, it has a pointer to the function which can have one or two parameters.
The function returns a function object which can be called in the same way as the
function. The types of function objects defined in <functional> are

pointer_to_unary_function<parameterl, result>
and
pointer_to_binary_function<parameterl, parameter2, result>

Frequently (but not always), these types remain hidden in the application. A short
example shows its use. A pointer to a function is initialized with the sine function.
Subsequently, the sine of an angle is called both via the function pointer and via a
function object generated with ptr_fun ().

#include<functional>
#include<iostream>
#include<cmath>

double (*f) (double) = std::sin; / / initialize pointer

int main() {
double alpha = 0.7854;
// call as:
std::cout << f (alpha) // function
<< std::endl
<< std::ptr_fun(f) (alpha) // functor
<< std::endl;

1.7 Some conventions

1.7.1

Namespaces

In order to avoid any name clashes, nearly all sample classes in the book are in
namespace br_st1.

In files with sample main () -programs, often using namespace std; isused.
All other programs use qualified names like in std::cout << std::endl; in-
stead of cout << endl;.

All algorithms and classes of the C++ standard library are in namespace std,
even if this is not specially mentioned.

28 THE CONCEPT OF THE C++ STANDARD TEMPLATE LIBRARY

1.7.2

1.7.3

Header files

The standard calling conventions put all C-headers into the namespace std. For ex-
ample, the standard header <cctype> is in the namespace std, whereas <ctype.h>
is in the global namespace.

The C standard library functions are accessed by omitting the ‘.h’ extension of
the file name and prefixing the old file name with a ‘c.” For example:

#include<string> // C++ string class

#include<cstring> // C string functions for C++, namespace std
#include<string.h> // C string functions, global namespace

#include<cctype> // ctype functions for C++
#include<ctype.h> // ctype functions, global namespace

The sample programs available via the internet (see page 271) contain a special
include-directory which should be passed to the compiler with the -I option. There-
fore header files of this directory are included using angle brackets <> instead of
quotation marks “. Some people prefer quotation marks. However, this means that
the compiler first tries to look up headers in the current directory. Telling the com-
piler with the -I option where the header files really are saves compilation time.

Allocators

Allocators provide memory for containers. There are system provided standard allo-
cators, but you can define your own special allocators which, for example, do some
garbage collection. Allocators are not treated in this book, because the emphasis lies
on data structures and algorithms and their complexity.

